Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)

Author:

Babanezhad Meisam,Masoumian Armin,Nakhjiri Ali Taghvaie,Marjani Azam,Shirazian Saeed

Abstract

AbstractIn membrane separation technologies, membrane modules are used to separate chemical components. In membrane technology, understanding the behavior of fluids inside membrane module is challenging, and numerical methods are possible by using computational fluid dynamics (CFD). On the other hand, the optimization of membrane technology via CFD needs time and computational costs. Artificial Intelligence (AI) and CFD together can model a chemical process, including membrane technology and phase separation. This process can learn the process by learning the neural networks, and point by point learning of CFD mesh elements (computing nodes), and the fuzzy logic system can predict this process. In the current study, the adaptive neuro-fuzzy inference system (ANFIS) model and different parameters of ANFIS for learning a process based on membrane technology was used. The purpose behind using this model is to see how different tuning parameters of the ANFIS model can be used for increasing the exactness of the AI model and prediction of the membrane technology. These parameters were changed in this study, and the accuracy of the prediction was investigated. The results indicated that with low number of inputs, poor regression was obtained, less than 0.32 (R-value), but by increasing the number of inputs, the AI algorithm led to an increase in the prediction capability of the model. When the number of inputs increased to 4, the R-value was increased to 0.99, showing the high accuracy of model as well as its high capability in prediction of membrane process. The AI results were in good agreement with the CFD results. AI results were achieved in a limited time and with low computational costs. In terms of the categorization of CFD data-set, the AI framework plays a critical role in storing data in short memory, and the recovery mechanism can be very easy for users. Furthermore, the results were compared with Particle Swarm Optimization (PSOFIS), and Genetic Algorithm (GAFIS). The time for prediction and learning were compared to study the capability of the methods in prediction and their accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3