Morphological analysis of descending tracts in mouse spinal cord using tissue clearing, tissue expansion and tiling light sheet microscopy techniques

Author:

Xie Jiongfang,Feng Ruili,Chen Yanlu,Gao Liang

Abstract

AbstractDescending tracts carry motor signals from the brain to spinal cord. However, few previous studies show the full view of the long tracts from a 3D perspective. In this study, we have followed five less well-known tracts that project from midbrain, hindbrain, and cerebellum to the mouse spinal cord, using the tissue clearing method in combination with tiling light sheet microscopy. By tracing axons in spinal cord, we found several notable features: among the five tracts the collateral "sister" branches occurred only in the axons originating from the cerebellospinal tracts; the axons from the spinal trigeminal nucleus crossed the midline of spinal cord to the contralateral side; those arising in the medullary reticular formation ventral part gave many branches in both cervical and lumbar segments; the axons from superior colliculus terminated only at upper cervical but with abundant branches in the hindbrain. Furthermore, we investigated the monosynaptic connections between the tracts and motor neurons in the spinal cord through hydrogel-based tissue expansion, and found several monosynaptic connections between the medullary reticular formation ventral part axons and spinal motor neurons. We believe that this is the first study to show the full 3D scope of the projection patterns and axonal morphologies of these five descending tracts to the mouse spinal cord. In addition, we have developed a new method for future study of descending tracts by three-dimensional imaging.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3