Predicting the molecular mechanism-driven progression of breast cancer through comprehensive network pharmacology and molecular docking approach

Author:

Vyas BhartiORCID,Kumar Sunil,Bhowmik Ratul,Akhter MymoonaORCID

Abstract

AbstractIdentification of key regulators is a critical step toward discovering biomarker that participate in BC. A gene expression dataset of breast cancer patients was used to construct a network identifying key regulators in breast cancer. Overexpressed genes were identified with BioXpress, and then curated genes were used to construct the BC interactome network. As a result of selecting the genes with the highest degree from the BC network and tracing them, three of them were identified as novel key regulators, since they were involved at all network levels, thus serving as the backbone. There is some evidence in the literature that these genes are associated with BC. In order to treat BC, drugs that can simultaneously interact with multiple targets are promising. When compared with single-target drugs, multi-target drugs have higher efficacy, improved safety profile, and are easier to administer. The haplotype and LD studies of the FN1 gene revealed that the identified variations rs6707530 and rs1250248 may both cause TB, and endometriosis respectively. Interethnic differences in SNP and haplotype frequencies might explain the unpredictability in association studies and may contribute to predicting the pharmacokinetics and pharmacodynamics of drugs using FN1.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3