PCA-based sub-surface structure and defect analysis for germanium-on-nothing using nanoscale surface topography

Author:

Jeong Jaewoo,Kim Taeyeong,Lee Bong Jae,Lee Jungchul

Abstract

AbstractEmpty space in germanium (ESG) or germanium-on-nothing (GON) are unique self-assembled germanium structures with multiscale cavities of various morphologies. Due to their simple fabrication process and high-quality crystallinity after self-assembly, they can be applied in various fields including micro-/nanoelectronics, optoelectronics, and precision sensors, to name a few. In contrast to their simple fabrication, inspection is intrinsically difficult due to buried structures. Today, ultrasonic atomic force microscopy and interferometry are some prevalent non-destructive 3-D imaging methods that are used to inspect the underlying ESG structures. However, these non-destructive characterization methods suffer from low throughput due to slow measurement speed and limited measurable thickness. To overcome these limitations, this work proposes a new methodology to construct a principal-component-analysis based database that correlates surface images with empirically determined sub-surface structures. Then, from this database, the morphology of buried sub-surface structure is determined only using surface topography. Since the acquisition rate of a single nanoscale surface micrograph is up to a few orders faster than a thorough 3-D sub-surface analysis, the proposed methodology benefits from improved throughput compared to current inspection methods. Also, an empirical destructive test essentially resolves the measurable thickness limitation. We also demonstrate the practicality of the proposed methodology by applying it to GON devices to selectively detect and quantitatively analyze surface defects. Compared to state-of-the-art deep learning-based defect detection schemes, our method is much effortlessly finetunable for specific applications. In terms of sub-surface analysis, this work proposes a fast, robust, and high-resolution methodology which could potentially replace the conventional exhaustive sub-surface inspection schemes.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3