Computational studies on the gas phase reaction of methylenimine (CH2NH) with water molecules

Author:

Ali Mohamad Akbar

Abstract

AbstractIn this work, we used quantum chemical methods and chemical kinetic models to answer the question of whether or not formaldehyde (CH2O) and ammonia (NH3) can be produced from gas phase hydration of methylenimine (CH2NH). The potential energy surfaces (PESs) of CH2NH + H2O → CH2O + NH3 and CH2NH + 2H2O → CH2O + NH3 + H2O reactions were computed using CCSD(T)/6–311++G(3d,3pd)//M06-2X/6–311++G(3d,3pd) level. The temperature-and pressure-dependent rate constants were calculated using variational transition state theory (VTST), microcanonical variational transition state theory $$(\mu VTST)$$(μVTST) and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) simulations. The PES along the reaction path forming a weakly bound complex (CH2NH⋯H2O) was located using VTST and $$\mu$$μVTST, however, the PES along the tight transition state was characterized by VTST with small curvature tunneling (SCT) approach. The results show that the formation of CH2NH + H2O → CH2NH⋯H2O is pressure -and temperature-dependent. The calculated atmospheric lifetimes of CH2NH⋯H2O (~ 8 min) are too short to undergo secondary bimolecular reactions with other atmospheric species. Our results suggest that the formation of CH2O and NH3 likely to occur in the combustion of biomass burning but the rate of formation CH2O and NH3 is predicted to be negligible under atmospheric conditions. When a second water molecule is added to the reaction, the results suggest that the rates of formation of CH2O and NH3 remain negligible.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3