Comparing different deep learning architectures for classification of chest radiographs

Author:

Bressem Keno K.,Adams Lisa C.,Erxleben Christoph,Hamm Bernd,Niehues Stefan M.,Vahldiek Janis L.

Abstract

AbstractChest radiographs are among the most frequently acquired images in radiology and are often the subject of computer vision research. However, most of the models used to classify chest radiographs are derived from openly available deep neural networks, trained on large image datasets. These datasets differ from chest radiographs in that they are mostly color images and have substantially more labels. Therefore, very deep convolutional neural networks (CNN) designed for ImageNet and often representing more complex relationships, might not be required for the comparably simpler task of classifying medical image data. Sixteen different architectures of CNN were compared regarding the classification performance on two openly available datasets, the CheXpert and COVID-19 Image Data Collection. Areas under the receiver operating characteristics curves (AUROC) between 0.83 and 0.89 could be achieved on the CheXpert dataset. On the COVID-19 Image Data Collection, all models showed an excellent ability to detect COVID-19 and non-COVID pneumonia with AUROC values between 0.983 and 0.998. It could be observed, that more shallow networks may achieve results comparable to their deeper and more complex counterparts with shorter training times, enabling classification performances on medical image data close to the state-of-the-art methods even when using limited hardware.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference25 articles.

1. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).

2. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4700–4708 (2017).

3. Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. AAAI Conf. Artif. Intell.33, 590–597 (2019).

4. Bustos, A., Pertusa, A., Salinas, J.-M. & de la Iglesia-Vayá, M. Padchest: A large chest X-ray image dataset with multi-label annotated reports. arXiv:1901.07441 (2019).

5. Rajpurkar, P., et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3