Simulation and optimization of rectenna systems

Author:

Olaimat Melad M.,Nayyeri Vahid,Ramahi Omar M.

Abstract

AbstractIn this paper, we present an entirely simulation-based method to predict the performance of a complete rectenna system that includes all its components: the receiving antenna, the matching circuits between the antenna and the rectification circuit, and the load circuit. Whereas previous efforts to predict the performance of a rectenna system subdivided the system into the antenna part (radiation to AC power conversion) and the circuit part (AC power to DC power conversion), and made assumptions about the performance of the non-linear part of the rectenna based on a specified power level and frequency, in this method, the radiation part of the system is incorporated into the simulation by using Thevenin theorem. The method proposed in this work enables the rectenna designer to predict the performance of the complete rectenna system, at the design stage, for variation in the incident field’s power density, angle of incidence, and operating frequency. Such performance prediction was not available before. Furthermore, the proposed method enables the rectenna designers to optimize the entire system over a portion of or the entire range of the operating frequency. Experimental results are provided to demonstrate the accuracy of the method.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rectenna for energy harvesting at 2.45 GHz;Revista de Ingenieria Innovativa;2024-06-30

2. Dual Band Analysis of a Novel Rectenna for Wireless Power Transmission and Energy Harvesting Applications;2024 IEEE International Magnetic Conference - Short papers (INTERMAG Short papers);2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3