Exploiting graphlet decomposition to explain the structure of complex networks: the GHuST framework

Author:

Espejo Rafael,Mestre Guillermo,Postigo Fernando,Lumbreras Sara,Ramos Andres,Huang Tao,Bompard Ettore

Abstract

AbstractThe characterization of topology is crucial in understanding network evolution and behavior. This paper presents an innovative approach, the GHuST framework to describe complex-network topology from graphlet decomposition. This new framework exploits the local information provided by graphlets to give a global explanation of network topology. The GHuST framework is comprised of 12 metrics that analyze how 2- and 3-node graphlets shape the structure of networks. The main strengths of the GHuST framework are enhanced topological description, size independence, and computational simplicity. It allows for straight comparison among different networks disregarding their size. It also reduces the complexity of graphlet counting, since it does not use 4- and 5-node graphlets. The application of the novel framework to a large set of networks shows that it can classify networks of distinct nature based on their topological properties. To ease network classification and enhance the graphical representation of them, we reduce the 12 dimensions to their main principal components. Furthermore, the 12 dimensions are easily interpretable. This enables the connection between complex-network analyses and diverse real applications.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-let based approach to evolutionary behaviors in chaotic time series;Communications in Nonlinear Science and Numerical Simulation;2025-01

2. Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean;Nature Communications;2024-01-02

3. UAG: User Action Graph Based on System Logs for Insider Threat Detection;2023 IEEE Symposium on Computers and Communications (ISCC);2023-07-09

4. GSketch: A Comprehensive Graph Analytic Approach for Masquerader Detection Based on File Access Graph;2021 IEEE Symposium on Computers and Communications (ISCC);2021-09-05

5. Disentangling marine microbial networks across space;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3