Modeling and optimization of CO2 mass transfer flux into Pz-KOH-CO2 system using RSM and ANN

Author:

Pashaei Hassan,Mashhadimoslem Hossein,Ghaemi Ahad

Abstract

AbstractIn this research, artificial neural networks (ANN) and response surface methodology (RSM) were applied for modeling and optimization of carbon dioxide (CO2) absorption using KOH-Pz-CO2system. In the RSM approach, the central composite design (CCD) describes the performance condition in accordance with the model using the least-squares technique. The experimental data was placed in second-order equations applying multivariate regressions and appraised applying analysis of variance (ANOVA). Thep-value for all dependent variables was obtained to be less than 0.0001, indicating that all models were significant. Furthermore, the experimental values obtained for the mass transfer flux satisfactorily matched the model values. TheR2and Adj-R2models are 0.9822 and 0.9795, respectively, which, it means that 98.22% of the variations for theNCO2is explained by the independent variables. Since the RSM does not create any details about the quality of the solution acquired, the ANN method was applied as the global substitute model in optimization problems. The ANNs are versatile utensils that can be utilized to model and anticipate different non-linear and involved processes. This article addresses the validation and improvement of an ANN model and describes the most frequently applied experimental plans, about their restrictions and generic usages. Under different process conditions, the developed ANN weight matrix could successfully forecast the behavior of the CO2absorption process. In addition, this study provides methods to specify the accuracy and importance of model fitting for both methodologies explained herein. The MSE values for the best integrated MLP and RBF models for the mass transfer flux were 0.00019 and 0.00048 in 100 epochs, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3