VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications

Author:

Matos Randy,Pala Nezih

Abstract

AbstractAs demand for higher capacity wireless communications increases, new approaches are needed to improve capacity. The lack of configurable radio platforms and power consumed to create new signals are some of the limitations preventing further advancements. To address these limitations, we propose an Ultra-Reconfigurable Intelligent Surface (URIS) platform based on the metal-to-insulator transition property of VO2. A VO2 layer is placed on a high-density micro-heater matrix consisting of pixels that can be electronically switched on. With this manner of control, heat can be transferred to selected areas of the VO2 layer and convert it to highly conductive metallic phase. This technique allows dynamically changing the shape of the reflection surface with high speed. We numerically investigated the heat activated switching and RF reflection characteristics of a reflectarray designed for potential 5G applications operating at 32 GHz. It consists of heating pixels with the size of 40 × 40 μm which can generate metallic VO2 patches or arbitrary shapes with ~ 100 × 100 μm spatial resolution. Our analyses resulted in large phase range of ~ 300° and approximate losses of −2 dB. The proposed device can serve as a novel platform for ultra-reconfigurable reflectarrays, other IRSs, and various wide spectral range RF applications.

Funder

NASA Headquarters

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3