Synthesis of L-methionine-loaded chitosan nanoparticles for controlled release and their in vitro and in vivo evaluation

Author:

Nuzaiba Pallath Muhammed,Gupta Subodh,Gupta Shobha,Jadhao Sanjay Balkrishna

Abstract

AbstractTherapeutically popular controlled release-enabling technology has forayed into the nutrition sector. Polymer coated forms of L-methionine used in soy protein diets, and its intermediate metabolite, S-adenosyl-L-methionine, used in myriad of medical conditions have proved more efficacious over (highly catabolized) free forms. In this premier study, L-methionine-loaded chitosan nanoparticles (M-NPs) were synthesized using ionic gelation method and their efficacy was evaluated. Biophysical characterization of the NPs was done using a Nanopartica SZ 100 analyser, transmission electron microscopy, and Fourier transform infrared spectroscopy. The M-NPs were spherical and smooth and 218.9 ± 7.4 nm in size and in vitro testing confirmed the controlled release of methionine. A 60-days feeding trial in L. rohita fish fingerlings was conducted. A basal diet suboptimal (0.85%) in methionine was provided with one of the supplements as under: none (control), 0.8% chitosan NPs (0.8% NPs), 1.2% L-methionine (1.2% M) (crystalline free form), 0.6% M-NPs and 1.2% M-NPs. While the addition of 0.6% M-NPs to the basal diet complemented towards meeting the established dietary requirement and resulted in significantly highest (P < 0.05) growth and protein efficiency and sero-immunological test scores (serum total protein, serum globulin, serum albumin: globulin ratio, phagocytic respiratory burst/NBT reduction and lysozyme activity), 1.2% supplementation in either form (free or nano), for being 0.85% excess, was counterproductive. Liver transaminases and dehydrogenases corroborated enhanced growth. It was inferred that part of the methionine requirement in nano form (M-NPs) can confer intended performance and health benefits in animals relying on plant proteins-based diets limiting in this essential amino acid. The study also paves the way for exploring chitosan NPs-based sustained delivery of amino acids in human medical conditions.

Funder

Consortium Research Platform on Nanotechnology, Indian Council of Agricultural Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3