A pilot prospective cohort study using experimental quantification of early peripheral nerve regeneration with high-frequency three-dimensional tomographic ultrasound (HFtUS)

Author:

Murphy Ralph N. A.,Rogers Steven K.,Bhatti Waqar,Wong Jason K.,Reid Adam J.

Abstract

AbstractQuantification of peripheral nerve regeneration after injury relies upon subjective outcome measures or electrophysiology assessments requiring fully regenerated neurons. Nerve surgeons and researchers lack objective, quantifiable information on the site of surgical repair and regenerative front. To address this need, we developed a quantifiable, visual, clinically available measure of early peripheral nerve regeneration using high-frequency, three-dimensional, tomographic ultrasound (HFtUS). We conducted a prospective, longitudinal study of adult patients with ulnar and/or median nerve injury of the arm undergoing direct epineurial repair within 5 days of injury. Assessment of morphology, volumetric and 3D grey-scale quantification of cross-sectional views were made at baseline up to 15 months post-surgery. Sensory and motor clinical outcome measures and patient reported outcome measures (PROMs) were recorded. Five participants were recruited to the study. Our data demonstrated grey-scale values (an indication of axonal density) increased in distal stumps within 2–4 months after repair, returning to normal as regeneration completed (4–6 months) with concomitant reduction in intraneural volume as surgical oedema resolved. Two patients with abnormal regeneration were characterized by increased intraneural volume and minimal grey-scale change. HFtUS may quantify early peripheral nerve regeneration offering a window of opportunity for surgical intervention where early abnormal regeneration is detected.

Funder

EPSRC/MRC Centre for Doctoral Training in Regenerative Medicine

Royal College of Surgeons of England

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3