AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography

Author:

Iyer Kritika,Najarian Cyrus P.,Fattah Aya A.,Arthurs Christopher J.,Soroushmehr S. M. Reza,Subban Vijayakumar,Sankardas Mullasari A.,Nadakuditi Raj R.,Nallamothu Brahmajee K.,Figueroa C. Alberto

Abstract

AbstractCoronary Artery Disease (CAD) is commonly diagnosed using X-ray angiography, in which images are taken as radio-opaque dye is flushed through the coronary vessels to visualize the severity of vessel narrowing, or stenosis. Cardiologists typically use visual estimation to approximate the percent diameter reduction of the stenosis, and this directs therapies like stent placement. A fully automatic method to segment the vessels would eliminate potential subjectivity and provide a quantitative and systematic measurement of diameter reduction. Here, we have designed a convolutional neural network, AngioNet, for vessel segmentation in X-ray angiography images. The main innovation in this network is the introduction of an Angiographic Processing Network (APN) which significantly improves segmentation performance on multiple network backbones, with the best performance using Deeplabv3+ (Dice score 0.864, pixel accuracy 0.983, sensitivity 0.918, specificity 0.987). The purpose of the APN is to create an end-to-end pipeline for image pre-processing and segmentation, learning the best possible pre-processing filters to improve segmentation. We have also demonstrated the interchangeability of our network in measuring vessel diameter with Quantitative Coronary Angiography. Our results indicate that AngioNet is a powerful tool for automatic angiographic vessel segmentation that could facilitate systematic anatomical assessment of coronary stenosis in the clinical workflow.

Funder

National Science Foundation

Wellcome Trust

American Heart Association

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference58 articles.

1. Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R. & Lucia, A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 4, 256 (2016).

2. Townsend, N. et al. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart J. 37, 3232–3245 (2016).

3. Go, A. S. et al. Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 127, e6–e245 (2013).

4. Russell, M. W., Huse, D. M., Drowns, S., Hamel, E. C. & Hartz, S. C. Direct medical costs of coronary artery disease in the United States. Am. J. Cardiol. 81, 1110–1115 (1998).

5. Nichols, W. W., O’Rourke, M. F., Vlachopoulos, C. & McDonald, D. A. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold, 2011).

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3