Author:
Cairns G.,Burté F.,Price R.,O’Connor E.,Toms M.,Mishra R.,Moosajee M.,Pyle A.,Sayer J. A.,Yu-Wai-Man P.
Abstract
AbstractWolfram syndrome (WS) is an ultra-rare progressive neurodegenerative disorder defined by early-onset diabetes mellitus and optic atrophy. The majority of patients harbour recessive mutations in the WFS1 gene, which encodes for Wolframin, a transmembrane endoplasmic reticulum protein. There is limited availability of human ocular and brain tissues, and there are few animal models for WS that replicate the neuropathology and clinical phenotype seen in this disorder. We, therefore, characterised two wfs1 zebrafish knockout models harbouring nonsense wfs1a and wfs1b mutations. Both homozygous mutant wfs1a−/− and wfs1b−/− embryos showed significant morphological abnormalities in early development. The wfs1b−/− zebrafish exhibited a more pronounced neurodegenerative phenotype with delayed neuronal development, progressive loss of retinal ganglion cells and clear evidence of visual dysfunction on functional testing. At 12 months of age, wfs1b−/− zebrafish had a significantly lower RGC density per 100 μm2 (mean ± standard deviation; 19 ± 1.7) compared with wild-type (WT) zebrafish (25 ± 2.3, p < 0.001). The optokinetic response for wfs1b−/− zebrafish was significantly reduced at 8 and 16 rpm testing speeds at both 4 and 12 months of age compared with WT zebrafish. An upregulation of the unfolded protein response was observed in mutant zebrafish indicative of increased endoplasmic reticulum stress. Mutant wfs1b−/− zebrafish exhibit some of the key features seen in patients with WS, providing a versatile and cost-effective in vivo model that can be used to further investigate the underlying pathophysiology of WS and potential therapeutic interventions.
Funder
Fight for Sight UK
Wellcome Trust
Medical Research Council
National Institute for Health Research
Moorfields Eye Charity
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Strom, T. M. et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (Wolframin) coding for a predicted transmembrane protein. Hum. Mol. Genet. 7(13), 2021–2028 (1998).
2. Wolfram, D. J. W. H. Diabetes mellitus and simple optic atrophy among siblings: Report of four cases. Mayo Clin. Proc. 13, 715–718 (1938).
3. Barrett, T. G., Bundey, S. E. & Macleod, A. F. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346(8988), 1458–1463 (1995).
4. Hershey, T. et al. Early brain vulnerability in Wolfram syndrome. PLoS ONE 7(7), e40604 (2012).
5. Chaussenot, A. et al. Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann. Neurol. 69(3), 501–508 (2011).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献