Early prognosis of respiratory virus shedding in humans

Author:

Aminian M.,Ghosh T.,Peterson A.,Rasmussen A. L.,Stiverson S.,Sharma K.,Kirby M.

Abstract

AbstractThis paper addresses the development of predictive models for distinguishing pre-symptomatic infections from uninfected individuals. Our machine learning experiments are conducted on publicly available challenge studies that collected whole-blood transcriptomics data from individuals infected with HRV, RSV, H1N1, and H3N2. We address the problem of identifying discriminatory biomarkers between controls and eventual shedders in the first 32 h post-infection. Our exploratory analysis shows that the most discriminatory biomarkers exhibit a strong dependence on time over the course of the human response to infection. We visualize the feature sets to provide evidence of the rapid evolution of the gene expression profiles. To quantify this observation, we partition the data in the first 32 h into four equal time windows of 8 h each and identify all discriminatory biomarkers using sparsity-promoting classifiers and Iterated Feature Removal. We then perform a comparative machine learning classification analysis using linear support vector machines, artificial neural networks and Centroid-Encoder. We present a range of experiments on different groupings of the diseases to demonstrate the robustness of the resulting models.

Funder

Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. Ip, D. K. et al. The dynamic relationship between clinical symptomatology and viral shedding in naturally acquired seasonal and pandemic influenza virus infections. Clin. Infect. Dis. 62(4), 431–437 (2016).

2. Leung, N. H., Xu, C., Ip, D. K. & Cowling, B. J. The fraction of influenza virus infections that are asymptomatic: A systematic review and meta-analysis. Epidemiology (Camb., Mass.) 26(6), 862 (2015).

3. He, X. et al. Temporal dynamics in viral shedding and transmissibility of covid-19. Nat. Med. 2, 1–4 (2020).

4. Cooper, L. et al. Pareto rules for malaria super-spreaders and super-spreading. Nat. Commun. 10(1), 1–9 (2019).

5. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438(7066), 355–359 (2005).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3