Vectorial characterization of surface wave via one-dimensional photonic-atomic structure

Author:

Salmanpour M. Asadolah,Mosleh M.,Hamidi S. M.

Abstract

AbstractQuantitative assessment of polarization properties of waves opens up the way for effective exploitation of them in many amazing applications. Tamm surface waves (TSW) that propagate on the interface of periodic dielectric media are proposed for many applications in numerous reports. The polarization state of TSW is not simply intuitive and would not be extracted from reflection spectra. Here considering orientation sensitive nature of the interaction between polarized electromagnetic wave and atom, we try to quantitatively characterize the polarization state of TSWs, excited on the surface of the 1D photonic crystal. To do this we performed direct contact between TSW and rubidium atomic gas by fabrication of a one-dimensional photonic crystal-atomic vapor cell and applied a moderate external magnetic field to create geometrical meaning and a sense of directionality to dark lines in reflection intensity. Our experimental results indicate that transition lines in the reflection spectrum of our hybrid system modify dependent on the orientation of the applied magnetic field and the transverse spin of TSW. We have used these changes to redefine the geometry of Voigt and Faraday for evanescent waves, especially Tamm surface waves. In the end, we performed simple mathematical operations on absorption spectra and extract the ratio of longitudinal and transverse electric field components of the polarization vector of TSW equal to $$\frac{2}{5}$$ 2 5 .

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3