Removal of direct dyes from wastewater using chitosan and polyacrylamide blends

Author:

Elzahar Medhat M. H.,Bassyouni M.

Abstract

AbstractThis study investigated the feasibility of employing neat chitosan powder, polyacrylamide, and chitosan micro-beads as adsorbents for the rapid and efficient removal of Direct Blue 78 dye from textile industrial wastewater. A series of batch experiments were conducted to examine the impact of adsorbent dose, contact time, and pH on the adsorption process. The physicochemical analysis, including FTIR, zeta potential analysis, and SEM were performed to identify the adsorption mechanism of chitosan powder and micro-beads. It was found that increasing the powder chitosan dose to 4.5 g/L and contact time up to 40 min resulted in achieving a significant increase in dye removal efficiency up to 94%. The highest removal efficiency of 94.2% was achieved at an initial dye concentration of 50 mg/L, a chitosan dosage of 4.5 g/L, and an optimized contact time of 60 min. Utilizing a polyacrylamide gel dose of 45 mL/L reduced the sedimentation time of chitosan from 8 h to 5 min. Equilibrium studies showed an initial L-shaped equilibrium curve, indicating that the adsorption process primarily arises from electrostatic interactions between dye molecules and adsorbent particles (physical forces). The Langmuir isothermal model demonstrated the best fit to the equilibrium data. Combining chitosan powder with polyacrylamide gel emerges as an economically viable choice for dye removal in industrial wastewater effluents, offering a cost-effective alternative to pricey commercial adsorbents. The results of the study revealed that the presence of polyacrylamide dye enhanced the removal efficiency and settling time of DB78 dye using chitosan.

Funder

Port Said University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3