Identification and characterization of miRNAs in spleens of sheep subjected to repetitive vaccination

Author:

Varela-Martínez Endika,Bilbao-Arribas Martin,Abendaño Naiara,Asín Javier,Pérez Marta,Luján Lluís,Jugo Begoña M.

Abstract

AbstractAccumulative evidence has shown that short non-coding RNAs such as miRNAs can regulate the innate and adaptive immune responses. Aluminium hydroxide is a commonly used adjuvant in human and veterinary vaccines. Despite its extended use, its mechanism of action is not fully understood and very few in vivo studies have been done to enhance understanding at the molecular level. In this work, we took advantage of a previous long-term experiment in which lambs were exposed to three different treatments by parallel subcutaneous inoculations with aluminium-containing commercial vaccines, an equivalent dose of aluminium or mock injections. Spleen samples were used for miRNA-seq. A total of 46 and 16 miRNAs were found differentially expressed when animals inoculated with commercial vaccines or the adjuvant alone were compared with control animals, respectively. Some miRNAs previously related to macrophage polarization were found dysregulated exclusively by the commercial vaccine treatment but not in the aluminium inoculated animals. The dysregulated miRNAs in vaccine group let-7b-5p, miR-29a-3p, miR-27a and miR-101-3p are candidates for further research, since they may play key roles in the immune response induced by aluminium adjuvants added to vaccines. Finally, protein–protein interaction network analysis points towards leucocyte transendothelial migration as a specific mechanism in animals receiving adjuvant only.

Funder

Euskal Herriko Unibertsitatea

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3