Author:
Alam AKM Badrul,Fujii Yoshiaki,Dipu Nahid Hasan,Chakma Torin,Neogi Prodeepta,Ullah ASM Woobaid,Abdullah Rini Asnida
Abstract
AbstractSlope failures in Bangladesh's Chittagong division are a growing concern, with fatalities increasing from 19 in 2000 to 162 in 2017 and projected to rise further. This study aims to identify the most vulnerable rock formation and assess Carboxymethyl Cellulose (CMC) as a solution for enhancing shale strength and mitigating slope failures. The research began by evaluating weathering susceptibility and stability of different rock layers, revealing the high instability of shale in the Bhuban Formation. Slake durability tests measured cation concentration to understand shale instability mechanisms. Laboratory experiments, including immersion tests and grained-and-molded shale specimens, examined CMC's potential to improve shale stability. Results indicated that the shale of the Bhuban Formation had the highest hammer value variations, indicating increased weathering susceptibility. Shale instability was attributed to illite layer dissolution, releasing K+. Intact shale specimens treated with CMC showed enhanced penetration resistance, shear strength, and deformation behavior, suggesting CMC's potential in increasing shale stability. Grained-and-molded shale specimens treated with CMC demonstrated increased shear strength, critical shear displacement, and contraction deformational behavior. Optical microscopy and scanning electron microscopy revealed the formation of cross-links between shale grains, contributing to improved shale stability. Further research is needed to explore the application of CMC for enhancing in situ rock slope stability. This study emphasizes the importance of addressing slope failures in the Chittagong division and provides insights into mitigating the risks through CMC-based interventions.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Sultana, N. Analysis of landslide-induced fatalities and injuries in Bangladesh: 2000–2018. Cogent. Soc. Sci. 6, 2000–2018 (2020).
2. Macrotrends.net. https://www.macrotrends.net/cities/20115/chittagong/population. https://www.macrotrends.net/cities/20115/chittagong/population2/4DataSource:UnitedNations-WorldPopulationProspects (1950).
3. Ahmed, B. et al. Developing a dynamic web-GIS based landslide early warning system for the Chittagong metropolitan area, Bangladesh. ISPRS Int. J. Geoinf. 7, 25 (2018).
4. Rabby, Y. W. & Li, Y. An integrated approach to map landslides in Chittagong Hilly Areas, Bangladesh, using Google Earth and field mapping. Landslides 16, 633–645 (2019).
5. Abedin, J., Rabby, Y. W., Hasan, I. & Akter, H. An investigation of the characteristics, causes, and consequences of June 13, 2017, landslides in Rangamati District Bangladesh. Geoenviron. Disasters 7, 25 (2020).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献