UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: a comprehensive evaluation

Author:

Yousefi Fatemeh,Mousavi Seyed BorhanORCID,Heris Saeed Zeinali,Naghash-Hamed SaminORCID

Abstract

AbstractThis study aimed to assess the UV-shielding features of the PMMA-based thin film coatings with the addition of TiO2 and ZnO nanoparticles as nanofillers considering different contents. Furthermore, the effect of TiO2/ZnO nanohybrids at different ratios and concentrations was examined. The XRD, FTIR, SEM, and EDX analyses characterized the prepared films' functional groups, structure, and morphology. Meanwhile, the coatings' optical properties and UV-protecting capability were investigated by ultraviolet–visible (UV–Vis) spectroscopy. The UV–Vis spectroscopic study revealed that as the concentration of nanoparticles increased in the hybrid-coated PMMA, the absorption in the UVA region increased. Overall, it can be concluded that the optimal coatings for PMMA were 0.1 wt% TiO2, 0.1 wt% ZnO, and 0.025:0.025 wt% TiO2: ZnO nanohybrid. Considering the acquired FT-IR of PMMA with different content of nanoparticles before and after exposure to the UV irradiation, for some films, it was confirmed that the polymer-based thin films degraded after 720 h, with either decreasing or increasing intensity of the degraded polymer, peak shifting, and band broadening. Notably, the FTIR results were in good agreement with UV–Vis outcomes. In addition, XRD diffraction peaks demonstrated that the pure PMMA matrix and PMMA coating films did not show any characteristic peaks indicating the presence of nanoparticles. All diffraction patterns were similar with and without any nanoparticles. Therefore, it depicted the amorphous nature of polymer thin film.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3