Integrated high-precision monitoring method for surface subsidence in mining areas using D-InSAR, SBAS, and UAV technologies

Author:

Zhu Mingfei,Yu Xuexiang,Tan Hao,Yuan Jiajia

Abstract

AbstractThe use of unmanned operations to monitor mining induced land subsidence is increasing. This study conducts a detailed comparative analysis of accuracy of measured ground deformation provided by Differential Interferometric Synthetic Aperture Radar (D-InSAR), Small Baseline Subset (SBAS), and Unmanned Aerial Vehicle (UAV) tilt photogrammetry with respect to levelling measurements. Based on such analysis we propose an integrated approach that combines multiple remote sensing methods to achieve a better global accuracy in the land subsidence monitoring in mining areas. Conducted at the Banji Coal Mine, this study collected subsidence data from April 10, 2021, to June 28, 2022, through D-InSAR, SBAS, and UAV techniques. After segmenting the subsidence basin into distinct zones, we qualitatively assessed each area with UAV-derived 3D models and quantitatively evaluated the precision of all applied techniques, benchmarking against leveling data. Our findings indicate that integrating D-InSAR, SBAS, and UAV technologies significantly enhances monitoring accuracy over any single method, demonstrating their combined effectiveness in different subsidence areas. Consequently, the synergistic integration of D-InSAR, SBAS, and UAV technologies, capitalizing on their complementary strengths, enables the achievement of intuitive, comprehensive, and high-precision monitoring of subsidence basins in mining areas.

Funder

Key Research and Development Program of Anhui Province

Major science and technology projects of Anhui Province

Anhui University of Science and Technology Talent Introduction Research Startup Fund

Anhui Province Universities Natural Science Research Project

Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitorin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3