Revealing Plasma-Surface Interaction at Atmospheric Pressure: Imaging of Electric Field and Temperature inside the Targeted Material

Author:

Slikboer Elmar,Acharya Kishor,Sobota AnaORCID,Garcia-Caurel Enric,Guaitella Olivier

Abstract

AbstractThe plasma-surface interaction is studied for a low temperature helium plasma jet generated at atmospheric pressure using Mueller polarimetry on an electro-optic target. The influence of the AC kHz operating frequency is examined by simultaneously obtaining images of the induced electric field and temperature of the target. The technique offers high sensitivity in the determination of the temperature variation on the level of single degrees. Simultaneously, the evolution of the electric field in the target caused by plasma-driven charge accumulation can be measured with the threshold of the order of 105 V/m. Even though a specific electro-optic crystal is used to obtain the results, they are generally applicable to dielectric targets under exposure of a plasma jet when they are of 0.5 mm thickness, have a dielectric constant greater than 4 and are at floating potential. Other techniques to examine the induced electric field in a target do not exist to the best of our knowledge, making this technique unique and necessary. The influence of the AC kHz operating frequency is important because many plasma jet designs used throughout the world operate at different frequency which changes the time between the ionization waves and hence the leftover species densities and stability of the plasma. Results for our jet show a linear operating regime between 20 and 50 kHz where the ionization waves are stable and the temperature increases linearly by 25 K. The charge deposition and induced electric fields do not increase significantly but the surface area does increase due to an extended surface propagation. Additionally, temperature mapping using a 100 μm GaAs probe of the plasma plume area has revealed a mild heat exchange causing a heating of several degrees of the helium core while the surrounding air slightly cools. This peculiarity is also observed without plasma in the gas plume.

Funder

Agence Nationale de la Recherche

Chaire Energie Durable EXXI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3