Author:
Tien Hui-Ju,Yang Hsin-Chih,Shueng Pei-Wei,Chen Jyh-Cheng
Abstract
AbstractCone-beam computed tomography (CBCT) integrated with a linear accelerator is widely used to increase the accuracy of radiotherapy and plays an important role in image-guided radiotherapy (IGRT). For comparison with fan-beam computed tomography (FBCT), the image quality of CBCT is indistinct due to X-ray scattering, noise, and artefacts. We proposed a deep learning model, “Cycle-Deblur GAN”, combined with CycleGAN and Deblur-GAN models to improve the image quality of chest CBCT images. The 8706 CBCT and FBCT image pairs were used for training, and 1150 image pairs were used for testing in deep learning. The generated CBCT images from the Cycle-Deblur GAN model demonstrated closer CT values to FBCT in the lung, breast, mediastinum, and sternum compared to the CycleGAN and RED-CNN models. The quantitative evaluations of MAE, PSNR, and SSIM for CBCT generated from the Cycle-Deblur GAN model demonstrated better results than the CycleGAN and RED-CNN models. The Cycle-Deblur GAN model improved image quality and CT-value accuracy and preserved structural details for chest CBCT images.
Funder
NYMU-FEMH Joint Research Program
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献