Entropy optimization and heat transfer analysis in MHD Williamson nanofluid flow over a vertical Riga plate with nonlinear thermal radiation

Author:

Rooman Muhammad,Jan Muhammad Asif,Shah Zahir,Kumam Poom,Alshehri Ahmed

Abstract

AbstractThe entropy generation for a reactive Williamson nanofluid flow past a vertical Riga system is the subject of this article. The effects of MHD, thermophoresis, nonlinear heat radiation and varying heat conductivity are modeled into the heat equation in the established model. Suitable similarity transformations are examined to bring down the partial differential equations into ordinary differential equations. The Homotopy analysis approach is used to solve the dimensionless transport equations analytically. The graphic information of the various parameters that emerged from the model is effectively collected and deliberated. The temperature field expands with thermophoresis, Brownian motion and temperature ratio parameters as the modified Hartmann number forces an increase in velocity, according to the findings of this analysis. With the increase in the fluid material terms, the entropy generation and Bejan number increase. Riga plate has numerous applications in improving the thermo-physics features of a fluid, the value of magnetic field embraces an important role in fluid mechanics. An external electric field can be used to control flow in weak electrically conductive fluids. The Riga plate is one of the devices used in this regard. It’s a device that creates electromagnetic fields. They produce the Lorentz force which is a force that directs fluid flow. The authors have discussed the entropy optimization for a reactive Williamson nanofluid flow past a vertical Riga plate is addressed. This is the first investigation on mass and heat transfer flow that the authors are aware of, and no similar work has yet been published in the literature. A thorough mathematical examination is also required to demonstrate the model’s regularity. The authors believe that the results acquired are novel and have not been plagiarized from any other sources.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3