Sexual morph specialisation in a trioecious nematode balances opposing selective forces

Author:

Adams Sally,Pathak Prachi,Kittelmann Maike,Jones Alun R. C.,Mallon Eamonn B.,Pires-daSilva Andre

Abstract

AbstractThe coexistence of different mating strategies, whereby a species can reproduce both by selfing and outcrossing, is an evolutionary enigma. Theory predicts two predominant stable mating states: outcrossing with strong inbreeding depression or selfing with weak inbreeding depression. As these two mating strategies are subject to opposing selective forces, mixed breeding systems are thought to be a rare transitory state yet can persist even after multiple speciation events. We hypothesise that if each mating strategy plays a distinctive role during some part of the species life history, opposing selective pressures could be balanced, permitting the stable co-existence of selfing and outcrossing sexual morphs. In this scenario, we would expect each morph to be specialised in their respective roles. Here we show, using behavioural, physiological and gene expression studies, that the selfing (hermaphrodite) and outcrossing (female) sexual morphs of the trioecious nematode Auanema freiburgensis have distinct adaptations optimised for their different roles during the life cycle. A. freiburgensis hermaphrodites are known to be produced under stressful conditions and are specialised for dispersal to new habitat patches. Here we show that they exhibit metabolic and intestinal changes enabling them to meet the cost of dispersal and reproduction. In contrast, A. freiburgensis females are produced in favourable conditions and facilitate rapid population growth. We found that females compensate for the lack of reproductive assurance by reallocating resources from intestinal development to mate-finding behaviour. The specialisation of each mating system for its role in the life cycle could balance opposing selective forces allowing the stable maintenance of both mating systems in A. freiburgensis.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3