Changes of PM2.5 and O3 and their impact on human health in the Guangdong-Hong Kong-Macao Greater Bay Area

Author:

Zhao Hui,Chen Zeyuan,Li Chen

Abstract

AbstractIn recent years, the combined pollution of PM2.5 and O3 in China, particularly in economically developed regions such as the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), has garnered significant attention due to its potential implications. This study systematically investigated the changes of PM2.5 and O3 and their associated human health effects in the GBA, utilizing observational data spanning from 2015 to 2019. The findings revealed a spatial trend indicating a gradual decrease in PM2.5 levels from the northwest to the southeast, while the spatial distribution of MDA8 O3 demonstrated an opposing pattern to that of PM2.5. The monthly fluctuations of PM2.5 and MDA8 O3 exhibited V-shaped and M-shaped patterns, respectively. Higher MDA8 O3 concentrations were observed in autumn, followed by summer and spring. Over the five-year period, PM2.5 concentrations exhibited a general decline, with an annual reduction rate of 1.7 μg m−3/year, while MDA8 O3 concentrations displayed an annual increase of 3.2 μg m−3. Among the GBA regions, Macao, Foshan, Guangzhou, and Jiangmen demonstrated notable decreases in PM2.5, whereas Jiangmen, Zhongshan, and Guangzhou experienced substantial increases in MDA8 O3 levels. Long-term exposure to PM2.5 in 2019 was associated with 21,113 (95% CI 4968–31,048) all-cause deaths (AD), 1333 (95% CI 762–1714) cardiovascular deaths (CD), and 1424 (95% CI 0–2848) respiratory deaths (RD), respectively, reflecting declines of 27.6%, 28.0%, and 28.4%, respectively, compared to 2015. Conversely, in 2019, estimated AD, CD, and RD attributable to O3 were 16,286 (95% CI 8143–32,572), 7321 (95% CI 2440–14,155), and 6314 (95% CI 0–13,576), respectively, representing increases of 45.9%, 46.2%, and 44.2% over 2015, respectively. Taken together, these findings underscored a shifting focus in air pollution control in the GBA, emphasizing the imperative for coordinated control strategies targeting both PM2.5 and O3.

Funder

China Postdoctoral Science Foundation

Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3