Author:
Kerwath Sven,Roodt-Wilding Rouvay,Samaai Toufiek,Winker Henning,West Wendy,Surajnarayan Sheroma,Swart Belinda,Bester-van der Merwe Aletta,Götz Albrecht,Lamberth Stephen,Wilke Christopher
Abstract
AbstractPhenotypic plasticity in life-history traits in response to heterogeneous environments has been observed in a number of fishes. Conversely, genetic structure has recently been detected in even the most wide ranging pelagic teleost fish and shark species with massive dispersal potential, putting into question previous expectations of panmixia. Shallow oceanic seamounts are known aggregation sites for pelagic species, but their role in genetic structuring of widely distributed species remains poorly understood. The yellowtail kingfish (Seriola lalandi), a commercially valuable, circumglobal, epipelagic fish species occurs in two genetically distinct Southern Hemisphere populations (South Pacific and southern Africa) with low levels of gene-flow between the regions. Two shallow oceanic seamounts exist in the ocean basins around southern Africa; Vema and Walters Shoal in the Atlantic and Indian oceans, respectively. We analysed rare samples from these remote locations and from the South African continental shelf to assess genetic structure and population connectivity inS. lalandiand investigated life-history traits by comparing diet, age, growth and maturation among the three sites. The results suggest that yellowtail from South Africa and the two seamounts are genetically and phenotypically distinct. Rather than mere feeding oases, we postulate that these seamounts represent islands of breeding populations with site-specific adaptations.
Funder
African Coelacanth Ecosystem Programme
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Holland, K. N. & Grubbs, R. D. Fish visitors to seamounts: Tunas and billfish at seamounts. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. J. et al.) 89–201 (Blackwell Publishing, Oxford, 2007).
2. Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (John Wiley & Sons, New York, 2008). .
3. Pazmiño, D. A. et al. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421 (2018).
4. Berrisford, C. D. Biology and zoogeography of Vema Seamount: A report on the first biological collection made on the summit. Trans. R. Soc. S. Afr. 38, 387–398 (1969).
5. Collette, B. B. & Parin, N. V. Shallow-water fishes of Walters Shoals Madagascar Ridge. Bull. Mar. Sci. 48, 1–22 (1991).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献