Machine learning prediction of Gleason grade group upgrade between in-bore biopsy and radical prostatectomy pathology

Author:

Ozbozduman Kaan,Loc Irem,Durmaz Selahattin,Atasoy Duygu,Kilic Mert,Yildirim Hakan,Esen Tarik,Vural Metin,Unlu M. Burcin

Abstract

AbstractThis study aimed to enhance the accuracy of Gleason grade group (GG) upgrade prediction in prostate cancer (PCa) patients who underwent MRI-guided in-bore biopsy (MRGB) and radical prostatectomy (RP) through a combined analysis of prebiopsy and MRGB clinical data. A retrospective analysis of 95 patients with prostate cancer diagnosed by MRGB was conducted where all patients had undergone RP. Among the patients, 64.2% had consistent GG results between in-bore biopsies and RP, whereas 28.4% had upgraded and 7.4% had downgraded results. GG1 biopsy results, lower biopsy core count, and fewer positive cores were correlated with upgrades in the entire patient group. In patients with $$\hbox {GG}>1$$ GG > 1 , larger tumor sizes and fewer biopsy cores were associated with upgrades. By integrating MRGB data with prebiopsy clinical data, machine learning (ML) models achieved 85.6% accuracy in predicting upgrades, surpassing the 64.2% baseline from MRGB alone. ML analysis also highlighted the value of the minimum apparent diffusion coefficient ($$\hbox {ADC}_{\text{min}}$$ ADC min ) for $$\hbox {GG}>1$$ GG > 1 patients. Incorporation of MRGB results with tumor size, $$\hbox {ADC}_{\text{min}}$$ ADC min value, number of biopsy cores, positive core count, and Gleason grade can be useful to predict GG upgrade at final pathology and guide patient selection for active surveillance.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3