Characterizing human random-sequence generation in competitive and non-competitive environments using Lempel–Ziv complexity

Author:

Wong Alice,Merholz Garance,Maoz Uri

Abstract

AbstractThe human ability for random-sequence generation (RSG) is limited but improves in a competitive game environment with feedback. However, it remains unclear how random people can be during games and whether RSG during games can improve when explicitly informing people that they must be as random as possible to win the game. Nor is it known whether any such improvement in RSG transfers outside the game environment. To investigate this, we designed a pre/post intervention paradigm around a Rock-Paper-Scissors game followed by a questionnaire. During the game, we manipulated participants’ level of awareness of the computer’s strategy; they were either (a) not informed of the computer’s algorithm or (b) explicitly informed that the computer used patterns in their choice history against them, so they must be maximally random to win. Using a compressibility metric of randomness, our results demonstrate that human RSG can reach levels statistically indistinguishable from computer pseudo-random generators in a competitive-game setting. However, our results also suggest that human RSG cannot be further improved by explicitly informing participants that they need to be random to win. In addition, the higher RSG in the game setting does not transfer outside the game environment. Furthermore, we found that the underrepresentation of long repetitions of the same entry in the series explains up to 29% of the variability in human RSG, and we discuss what might make up the variance left unexplained.

Funder

John Templeton Foundation

Fetzer Memorial Trust

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3