SNG and DNG meta-absorber with fractional absorption band for sensing application

Author:

Hoque Ahasanul,Islam Mohammad Tariqul,Almutairi Ali F.,Chowdhury Muhammad E. H.,Samsuzzaman Md.

Abstract

AbstractThis paper reports on a tunable transmission frequency characteristics-based metamaterial absorber of an X band sensing application with a fractional bandwidth. Tunable resonator metamaterial absorbers fabricated with dielectric surface have been the subject of growing attention of late. Absorbers possess electromagnetic properties and range modification capacity, and they have yet to be studied in detail. The proposed microstructure resonator inspired absorber with triple fractional band absorption consists of two balanced symmetrical vertical patches at the outer periphery and a tiny drop hole at two edges. Experimental verification depicted two absorption bands with single negative (SNG) characteristics for two resonances, but double negative (DNG) for single resonance frequency. The mechanism of sensing and absorption was analyzed using the transmission line principle with useful parameter analysis. Cotton, a hygroscopic fiber with moisture content, was chosen to characterize the proposed absorber for the X band application. The electrical properties of the cotton changed depending on the moisture absorption level. The simulation and the measured absorption approximately justified the result; the simulated absorption was above 90% (at 10.62, 11.64, and 12.8 GHz), although the steady level was 80%. The moisture content of the cotton (at different levels from 0 to 32.13%) was simulated, and the transmission resonance frequency changed its point in two significant ranges. However, comparing the two adopted measurement method and algorithm applied to the S parameter showed a closer variation between the two resonances (11.64 and 12.8 GHz) which signified that a much more accurate measurement of the cotton dielectric constant was possible up to a moisture content of 16.1%. However, certain unwanted changes were noted at 8.4–8.9 GHz and 10.6–12.4 GHz. The proposed triple-band absorber has potential applications in the X band sensing of moisture in capsules or tablet bottles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3