Author:
Zhang Chun,Qian Xianju,Song Hailong,Jia Jinzhang
Abstract
AbstractInvestigating surfactant effects on the floatability of Wiser bituminous coal holds significant importance in improving coal cleanliness and utilization value. Using density functional theory and molecular dynamics simulation methods, this study constructed models of Wiser bituminous coal and examined the impact of different surfactants, including the anionic surfactant sodium dodecyl benzene sulfonate, the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB), and the non-ionic surfactant fatty alcohol ethoxylated ether. The focus was on investigating the charge distribution characteristics of these molecules and the modifying effect of binary surfactants on the hydrophobicity of bituminous coal. Results revealed that the maximum electrostatic potential was concentrated near oxygen/nitrogen/sulfur-containing functional groups like sulfonic acid groups, quaternary ammonium cations, ethylene oxide, hydroxyl groups, carboxyl groups, and sulfur bonds. These functional groups exhibited a propensity for accepting/delivering electrons to form hydrogen bonds. Among the surfactants tested, CTAB revealed the slightest difference in frontier orbital energy, measuring 3.187 eV, thereby demonstrating a superior trapping ability compared with the other two surfactants. Adsorption reactions within the system were determined to be spontaneous, with over 60% of the interaction force attributed to electrostatic forces. Moreover, the repulsive force magnitude with water molecules followed the trend: sulfonate group (2.20 Å) < ethylene oxide (2.43 Å) < quaternary ammonium cation (2.57 Å), indicating more excellent water repellency of CTAB. Findings showed that CTAE binary surfactants proved most effective in modifying the hydrophobicity of bituminous coal. This study offers valuable insights into reducing waste, pollution, and resource wastage.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC