Comparative genome and phylogenetic analysis revealed the complex mitochondrial genome and phylogenetic position of Conopomorpha sinensis Bradley

Author:

Chang Hong,Guo Jianglong,Li Mingzhi,Gao Yan,Wang Siwei,Wang Xiaonan,Liu Yanping

Abstract

AbstractConopomorpha sinensis Bradley is a destructive pest that causes severe economic damage to litchi and longan. Previous C. sinensis research has focused on population life tables, oviposition selectivity, pest population prediction, and control technology. However, there are few studies on its mitogenome and phylogenetic evolution. In this study, we sequenced the whole mitogenome of C. sinensis by the third-generation sequencing, and analyzed the characteristics of its mitogenome by comparative genome. The complete mitogenome of C. sinensis is a typical circular and double-stranded structure. The ENC-plot analyses revealed that natural selection could affect the information of codon bias of the protein-coding genes in the mitogenome of C. sinensis in the evolutionary process. Compared with 12 other Tineoidea species, the trnA-trnF gene cluster of tRNA in the C. sinensis mitogenome appears to have a new arrangement pattern. This new arrangement has not been found in other Tineoidea or other Lepidoptera, which needs further exploration. Meanwhile, a long AT repeated sequence was inserted between trnR and trnA, trnE and trnF, ND1 and trnS in the mitogenome of C. sinensis, and the reason for this sequence remains to be further studied. Furthermore, the results of phylogenetic analysis showed that the litchi fruit borer belonged to Gracillariidae, and Gracillariidae was monophyletic. The results will contribute to an improved understanding of the complex mitogenome and phylogeny of C. sinensis. It also will provide a molecular basis for further research on the genetic diversity and population differentiation of C. sinensis.

Funder

President Funding of Guangdong Academy of Agricultural Sciences

Youth tutorial program of Guangdong Academy of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3