Finite element analysis and structure optimization of a gantry-type high-precision machine tool

Author:

Chan Tzu-Chi,Ullah Aman,Roy Bedanta,Chang Shinn-Liang

Abstract

AbstractThe high-precision machine tool’s dynamic, static, and rigid nature directly affects the machining efficiency and surface quality. Static and dynamic analyses are essential for the design and improvement of precision machine to ensure good tool performance under difficult and demanding machining conditions. In this study, the performance of a high-precision machine tool was analyzed using its virtual model created using CAD. Static and model analysis using ANSYS Workbench software was conducted to establish the tool's static deformation and static stiffness. Furthermore, the static and dynamic characteristics of the tool were explored using a finite element modeling approach to study their performance. In particular, the structure, static force, modal, frequency spectrum, and topology optimization of machine tools were primarily analyzed. Using model analysis, we found the first four different frequencies (22.5, 28.9, 40.6, and 47.4 Hz) and vibration type, which suggested of a weak link. Further static structural analysis revealed that the deformation of the spindle was 67.26 μm. An experimental static rigidity analysis was performed, and the experimental deformation values of the tool and spindle were obtained. The static and dynamic characteristics, as well as the accuracy and efficiency of the finite element model, were verified by comparing the data with the finite element analysis (FEA) results. Subsequently, we modified the settings and analysis model to ensure that the analysis results were consistent with the experimental findings. The error between the two results was within 1.56%. For an applied load of 5000 N on the spindle nose, the tool nose transient response was 0.5 s based on transient analysis. Under the condition that the structural deformation is as constant as possible, the lightweight structure may achieve the minimum weight and enhance the natural frequency; thus, the ideal structure will be obtained, and finite element analysis will then be performed. The optimal conditions for topology optimization include a lightweight structure, reduced structural deformation, and increased natural frequency of the structure. The developed method improves structural optimization, increases the ability of the product to be manufactured, and offers designers a variety of price-effective options.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3