Author:
Graeve A,Ioannidou I,Reinhard J,Görl D. M.,Faissner A,Weiss LC
Abstract
AbstractPredator-induced phenotypic plasticity describes the ability of prey to respond to an increased predation risk by developing adaptive phenotypes. Upon the perception of chemical predator cues, the freshwater crustacean Daphnia longicephala develops defensive crests against its predator Notonecta spec. (Heteroptera). Chemical predator perception initiates a cascade of biological reactions that leads to the development of these morphological features. Neuronal signaling is a central component in this series, however how the nervous system perceives and integrates environmental signals is not well understood. As neuronal activity is often accompanied by functional and structural plasticity of the nervous system, we hypothesized that predator perception is associated with structural and functional changes of nervous tissues. We observe structural plasticity as a volume increase of the central brain, which is independent of the total number of brain cells. In addition, we find functional plasticity in form of an increased number of inhibitory post-synaptic sites during the initial stage of defense development. Our results indicate a structural rewiring of nerve-cell connections upon predator perception and provide important insights into how the nervous system of prey species interprets predator cues and develops cost–benefit optimized defenses.
Funder
Deutsche Forschungsgemeinschaft
Ruhr-Universität Bochum
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).
2. Weiss, L. C. & Tollrian, R. Predator induced defenses in Crustacea. in The Natural History of Crustacea: Life Histories, Volume 5 (eds. Welborn, G. & Thiel, M.) 303–321 (Oxford University Press, 2018).
3. Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. für Hydrobiol. 119, 191–196 (1990).
4. Krueger, D. A. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0219 (1981).
5. Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0201 (1981).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献