Performance prediction of crosses in plant breeding through genotype by environment interactions

Author:

Ansarifar Javad,Akhavizadegan Faezeh,Wang Lizhi

Abstract

AbstractPerformance prediction of potential crosses plays a significant role in plant breeding, which aims to produce new crop varieties that have higher yields, require fewer resources, and are more adaptable to the changing environments. In the 2020 Syngenta crop challenge, Syngenta challenged participants to predict the yield performance of a list of potential breeding crosses of inbreds and testers based on their historical yield data in different environments. They released a dataset that contained the observed yields for 294,128 corn hybrids through the crossing of 593 unique inbreds and 496 unique testers across multiple environments between 2016 and 2018. To address this challenge, we designed a new predictive approach that integrates random forest and an optimization model for G $$\times $$× E interaction detection. Our computational experiment found that our approach achieved a relative root-mean-square-error (RMSE) of 0.0869 for the validation data, outperforming other state-of-the-art models such as factorization machine and extreme gradient boosting tree. Our model was also able to detect genotype by environment interactions that are potentially biologically insightful. This model won the first place in the 2020 Syngenta crop challenge in analytics.

Funder

National Science Foundation under the LEAP HI and GOALI programs

National Science Foundation under the EAGER program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3