Effect of sulfasalazine on ferroptosis during intestinal injury in rats after liver transplantation

Author:

Wu Wei,Bu Wenhao,Tan Yongxing,Wang Yongwang

Abstract

AbstractUsing a rat autologous orthotopic liver transplantation (AOLT) model and liver cold ischemia–reperfusion (I/R)-induced intestinal injury, we clarified whether ferroptosis occurred in rat AOLT cold I/R-induced intestinal injury. Additionally, the role and possible mechanism of the ferroptosis activator sulfasalazine (SAS) in intestinal injury-induced ferroptosis in rats with AOLT liver cold I/R were investigated. Sixty specific pathogen free (SPF)-grade adult male Sprague‒Dawley (SD) rats were randomly divided into 5 groups using the random number table method (n = 12). Six rats were randomly selected at 6 hour (h) and 24 h after I/R. Inferior vena cava blood specimens were collected from the portal vein (PV) opening at 6 h and 24 h. The concentrations of serum malondialdehyde (MDA), serum interleukin 6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA). Ileal tissue was obtained from the PV opening in rats in each group at 6 h and 24 h, and ileal tissue sections were observed under light microscopy. The contents of intestinal MDA, superoxide dismutase (SOD), glutathione(GSH), glutathione peroxidase 4 (GPX4), and tissue iron were determined by ELISA, and the expression of GPX4 and the cysteine glutamate reverse transporter light chain protein (xCT) was determined by Western blot. The experimental results show that ferroptosis is involved in the pathophysiological process of intestinal injury induced by cold hepatic ischemia–reperfusion in AOLT rats. In addition, SAS (500 mg/kg) may inhibit the cystine/glutamate antiporters (System Xc¯)/GSH/GPX4 signal axis in intestinal injury induced by cold I/R in rat AOLT liver, or iron overload after reperfusion, causing a massive accumulation of L-ROS and activating cellular ferroptosis, further aggravate the intestinal injury.

Funder

The Natural Science Foundation of Guangxi

Scientific Research and Development Project of Guilin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3