Abstract
AbstractUsing the braid symmetry we demonstrate the derivation of the Laughlin function for the main hierarchy 1/q of FQHE in the lowest Landau level of two-dimensional electron system with a mathematical rigour. This proves that the derivation of Laughlin function unavoidably requires some topological elements and cannot be completed within a local quantum mechanics, i.e., without global topological constraints imposed. The method shows the way for the generalization of this function onto other fractions from the general quantum Hall hierarchy. A generalization of the Laughlin function is here formulated.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Abrikosov, A. A., Gorkov, L. P. & Dzialoshinskii, I. E. Methods of Quantum Field Theory in Statistical Physics (Dover Publ. Inc., 1975).
2. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Pergamon Press, 1969).
3. Ashcroft, N. & Mermin, D. Solid State Physics (Holt, 1976).
4. Wilson, K. G. & Kogut, J. The renormalization group and the e expansion. Phys. Rep. 12, 75 (1974).
5. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献