Author:
Ashkbar Ali,Rezaei Fatemeh,Attari Farnoosh,Ashkevarian Saboura
Abstract
AbstractBreast cancer is a neoplastic disease with a high mortality rate among women. Recently, photodynamic therapy (PDT) and photothermal therapy (PTT) attracted considerable attention because of their minimal invasiveness. The PTT approach works based on hyperthermia generation, and PDT approach employs laser irradiation to activate a reagent named photosensitizer. Therefore, in the current paper, a dual-functioned nanocomposite (NC) was designed for the treatment of breast cancer model in Balb/c mice with the combination of photodynamic and photothermal approaches. Transmission electron microscopy, UV–visible spectroscopy, FTIR, and XRD were employed to validate the nanostructure and silica coating and curcumin (CUR) immobilization on the Fe3O4 nanoparticles. The effect of Fe3O4/SiO2-CUR combined with PDT and PTT was assessed in vivo on the breast tumor mice model, and immunohistochemistry (IHC) was employed to evaluate the expression of apoptotic Bax and Caspase3 proteins. The TEM images, UV–visible absorption, and FTIR spectra demonstrated the successful immobilization of curcumin molecules on the surface of Fe3O4/SiO2. Also, MTT assay confirmed the nontoxic nature of Fe3O4/SiO2 nanoparticles in vitro. In the breast tumor mice model, we have assessed six treatment groups, including control, CUR + PDT, Blue + NIR (near-infrared) lasers, NC, NC + PTT, and NC + PDT + PTT. The tumor volume in the NC + PDT + PTT group showed a significant reduction compared to other groups (p < 0.05). More interestingly, the tumor volume of NC + PDT + PTT group showed a 27% decrease compared to its initial amount. It should be noted that no detectable weight loss or adverse effects on the vital organs was observed due to the treatments. Additionally, the IHC data represented that the expression of proapoptotic Bax and Caspase3 proteins were significantly higher in the NC + PDT + PTT group compared to the control group, indicative of apoptosis. To conclude, our data supported the fact that the NC + PDT + PTT strategy might hold a promising substitute for chemotherapy for the treatment of triple-negative breast cancers.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Fredette, S. Breast cancer survivors: Concerns and coping. Cancer Nurs. 18, 35–46 (1995).
2. Chaurasia, V. & Pal, S. Data mining techniques: To predict and resolve breast cancer survivability. Int. J. Comput. Sci. Mobile Comput. IJCSMC 3, 10–22 (2014).
3. 3Ganz, P., Rowland, J., Meyerowitz, B. & Desmond, K. In Adjuvant Therapy of Primary Breast Cancer VI 396–411 (Springer, Berlin, 1998).
4. Dickerson, E. B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008).
5. Wang, S. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055–3061. https://doi.org/10.1002/adma.201204623 (2013).
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献