Characterization of complex fluvio–deltaic deposits in Northeast China using multi-modal machine learning fusion

Author:

Boateng Cyril D.ORCID,Fu Li-Yun,Danuor Sylvester K.

Abstract

AbstractDue to the lack of petroleum resources, stratigraphic reservoirs have become an important source of future discoveries. We describe a methodology for predicting reservoir sands from complex reservoir seismic data. Data analysis involves a bio-integrated framework called multi-modal machine learning fusion (MMMLF) based on neural networks. First, acoustic-related seismic attributes from post-stack seismic data were used to characterize the reservoirs. They enhanced the understanding of the structure and spatial distribution of petrophysical properties of lithostratigraphic reservoirs. The attributes were then classified as varied modal inputs into a central fusion engine for prediction. We applied the method to a dataset from Northeast China. Using seismic attributes and rock physics relationships as input data, MMMLF was performed to predict the spatial distribution of lithology in the Upper Guantao substrata. Despite the large scattering in the acoustic-related data properties, the proposed MMMLF methodology predicted the distribution of lithological properties through the gamma ray logs. Moreover, complex stratigraphic traps such as braided fluvial sandstones in the fluvio–deltaic deposits were delineated. These findings can have significant implications for future exploration and production in Northeast China and similar petroleum provinces around the world.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3