Author:
Diba Farzana,Khan Md. Zaved Hossain,Uddin Salman Zahir,Istiaq Arif,Shuvo Md. Sadikur Rahman,Ul Alam A. S. M. Rubayet,Hossain M. Anwar,Sultana Munawar
Abstract
AbstractArsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain’s As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobactersp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Chen, J., Sun, S., Li, C. Z., Zhu, Y. G. & Rosen, B. P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 48, 1141 (2014).
2. Ghosh, N. & Singh, R. Groundwater Arsenic Contamination in India: Vulnerability and Scope for Remedy (National Institute of Hydrology, 2009).
3. Luong, J. H. T., Lam, E. & Male, K. B. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157 (2014).
4. Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 121, 295 (2013).
5. Ahmad, S. A., Khan, M. H. & Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare Policy 11, 251 (2018).
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献