Abstract
AbstractEcologists and fisheries managers are interested in monitoring economically important marine fish species and using this data to inform management strategies. Determining environmental factors that best predict changes in these populations, particularly under rapid climate change, are a priority. I illustrate the application of the least squares-based spline estimation and group LASSO (LSSGLASSO) procedure for selection of coefficient functions in single index varying coefficient models (SIVCMs) on an ecological data set that includes spatiotemporal environmental covariates suspected to play a role in the catches and weights of six groundfish species. Temporal trends in variable selection were apparent, though the selection of variables was largely unrelated to common North Pacific climate indices. These results indicate that the strength of an environmental variable’s effect on a groundfish population may change over time, and not necessarily in-step with known low-frequency patterns of ocean-climate variability commonly attributable to large-scale regime shifts in the North Pacific. My application of the LSSGLASSO procedure for SIVCMs to deep water species using environmental data from various sources illustrates how variable selection with a flexible model structure can produce informative inference for remote and hard-to-reach animal populations.
Funder
Division of Graduate Education
Publisher
Springer Science and Business Media LLC
Reference112 articles.
1. Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21. https://doi.org/10.1046/j.1365-2419.1998.00052.x (1998).
2. Hollowed, A. B. & Wooster, W. S. Variability of winter ocean conditions and strong year classes of Northeast Pacific groundfish. ICES Mar. Sci. Symp. 195, 433–444 (1992).
3. Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44. https://doi.org/10.1023/A:1015820616384 (2002).
4. Di Lorenzo, E. et al. North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett.https://doi.org/10.1029/2007GL032838 (2008).
5. Di Lorenzo, E. et al. Synthesis of pacific ocean climate and ecosystem dynamics. Oceanography 26, 68–81. https://doi.org/10.5670/oceanog.2013.76 (2013).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献