Ultra High-efficiency Integrated Mid Infrared to Visible Up-conversion System

Author:

Motmaen Aytak,Rostami Ali,Matloub Samiye

Abstract

AbstractIn this paper, we have introduced and investigated an integrated optoelectronic chip for the up-conversion of mid-infrared to visible light. A thin layer of the nanocrystalline photoconductive PbSe is put on the Base of the NPN bipolar junction transistor and a doped phosphorescence organic light-emitting diode is placed on the Collector contacts. The incoming mid-infrared light is converted into an electric current by quantum dot photodetector, then amplified by the NPN bipolar junction transistor, and finally, the amplified current is driven through the Collector in the organic light-emitting diode. The organic light-emitting diode is designed to emit a green color. Our findings indicated that the proposed devices provide an up-conversion process from mid-infrared to visible light with a high-efficiency rate. The quantum dot photodetector is designed to detect 3 μm and also the organic light-emitting diode works at 523 nm. It is easy to tune the 3 ~ 5 μm incoming light by tuning the PbSe quantum dots, and the output light is tuned by tuning the organic light-emitting diode structure. Thus, the proposed structure is highly flexible regarding receiving mid-infrared and generating visible light. It is concluded that the external quantum efficiency for the proposed structure for 3 μm to 523 nm is 600. Also, the enhancement of the transistor current gain (β) can further increase the conversion efficiency of the proposed device. Moreover, different structures such as Darlington can be used instead of the bipolar junction transistor to enhance conversion efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3