Benefit of using interaction effects for the analysis of high-dimensional time-response or dose-response data for two-group comparisons

Author:

Duda Julia C.,Drenda Carolin,Kästel Hue,Rahnenführer Jörg,Kappenberg Franziska

Abstract

AbstractHigh throughput RNA sequencing experiments are widely conducted and analyzed to identify differentially expressed genes (DEGs). The statistical models calculated for this task are often not clear to practitioners, and analyses may not be optimally tailored to the research hypothesis. Often, interaction effects (IEs) are the mathematical equivalent of the biological research question but are not considered for different reasons. We fill this gap by explaining and presenting the potential benefit of IEs in the search for DEGs using RNA-Seq data of mice that receive different diets for different time periods. Using an IE model leads to a smaller, but likely more biologically informative set of DEGs compared to a common approach that avoids the calculation of IEs.

Funder

German Research Foundation

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3