Applying EFDC Explorer model in the Gallinas River, Mexico to estimate its assimilation capacity for water quality protection

Author:

Villota-López Claudia,Rodríguez-Cuevas Clemente,Torres-Bejarano Franklin,Cisneros-Pérez Rodolfo,Cisneros-Almazán Rodolfo,Couder-Castañeda Carlos

Abstract

AbstractSanitary and industrial wastewater discharged into rivers, is a general problem that occurs in most of the world and Mexico is not the exception, the main goal of this research is to determine based on simulations of pollutants concentrations, the assimilation capacity of the Gallinas River against discharges of agricultural and industrial wastewater from the cultivation and processing of sugar cane under two different hypothetical simulation scenarios, based on reproducing two well know scenarios. In sugarcane cultivation, large quantities of fertilizers are used whose main active components are based on nitrogen or phosphorus compounds, therefore, the wastewater resulting from sugarcane processing contains a high organic content from 20 to 40% of inorganic compounds, such as nitrogenous substances, organic acids, and phosphorous sulfates. For this reason, the physical–chemical variables of interest analyzed in this work are the PO$$_4$$ 4 (phosphate), NO$$_3$$ 3 (nitrate), and DO (dissolved oxygen). With the simulation results according to each scenery, it can be determined, that despite the continuous discharge of polluting elements, the Gallinas River has a good assimilation capacity thanks to reaeration processes that permit efficient recovery of the dissolved oxygen in the water column. Gallinas River is located in the region known as the Huasteca Potosina, this investigation is relevant for the region due to the River is of vital importance being the main tributary that allows socioeconomic development activities in this zone. To carry out the simulations, was used the Explorer Modeling System 8.4 (EFCD) model and was performed two samplings campaign along 15 km in the water body to calibrate the numerical model to represent the dry and wet seasons during May and September respectively named as calibration scenarios.

Funder

Universidad Autónoma de San Luis Potosí

Universidad de Córdoba

Instituto Politecnico Nacional

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3