Probing delivery of a lipid nanoparticle encapsulated self-amplifying mRNA vaccine using coherent Raman microscopy and multiphoton imaging

Author:

Bera Kajari,Rojas-Gómez Renán A.,Mukherjee Prabuddha,Snyder Corey E.,Aksamitiene Edita,Alex Aneesh,Spillman Darold R.,Marjanovic Marina,Shabana Ahmed,Johnson Russell,Hood Steve R.,Boppart Stephen A.

Abstract

AbstractThe COVID-19 pandemic triggered the resurgence of synthetic RNA vaccine platforms allowing rapid, scalable, low-cost manufacturing, and safe administration of therapeutic vaccines. Self-amplifying mRNA (SAM), which self-replicates upon delivery into the cellular cytoplasm, leads to a strong and sustained immune response. Such mRNAs are encapsulated within lipid nanoparticles (LNPs) that act as a vehicle for delivery to the cell cytoplasm. A better understanding of LNP-mediated SAM uptake and release mechanisms in different types of cells is critical for designing effective vaccines. Here, we investigated the cellular uptake of a SAM-LNP formulation and subsequent intracellular expression of SAM in baby hamster kidney (BHK-21) cells using hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) microscopy and multiphoton-excited fluorescence lifetime imaging microscopy (FLIM). Cell classification pipelines based on HS-CARS and FLIM features were developed to obtain insights on spectral and metabolic changes associated with SAM-LNPs uptake. We observed elevated lipid intensities with the HS-CARS modality in cells treated with LNPs versus PBS-treated cells, and simultaneous fluorescence images revealed SAM expression inside BHK-21 cell nuclei and cytoplasm within 5 h of treatment. In a separate experiment, we observed a strong correlation between the SAM expression and mean fluorescence lifetime of the bound NAD(P)H population. This work demonstrates the ability and significance of multimodal optical imaging techniques to assess the cellular uptake of SAM-LNPs and the subsequent changes occurring in the cellular microenvironment following the vaccine expression.

Funder

GlaxoSmithKline

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3