Detection of safety helmet and mask wearing using improved YOLOv5s

Author:

Li Shuangyuan,Lv Yanchang,Liu Xiangyang,Li Mengfan

Abstract

AbstractWith the advancement of society, ensuring the safety of personnel involved in municipal construction projects, particularly in the context of pandemic control measures, has become a matter of utmost importance. This paper introduces a security measure for municipal engineering, combining deep learning with object detection technology. It proposes a lightweight artificial intelligence (AI) detection method capable of simultaneously identifying individuals wearing masks and safety helmets. The method primarily incorporates the ShuffleNetv2 feature extraction mechanism within the framework of the YOLOv5s network to reduce computational overhead. Additionally, it employs the ECA attention mechanism and optimized loss functions to generate feature maps with more comprehensive information, thereby enhancing the precision of target detection. Experimental results indicate that this algorithm improves the mean average precision (mAP) value by 4.3%. Furthermore, it reduces parameter and computational loads by 54.8% and 53.8%, respectively, effectively striking a balance between lightweight operation and precision. This study serves as a valuable reference for research pertaining to lightweight target detection in the realm of municipal construction safety measures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3