Predicting structural material degradation in advanced nuclear reactors with ion irradiation

Author:

Taller Stephen,VanCoevering Gerrit,Wirth Brian D.,Was Gary S.

Abstract

AbstractSwelling associated with the formation and growth of cavities is among the most damaging of radiation-induced degradation modes for structural materials in advanced nuclear reactor concepts. Ion irradiation has emerged as the only practical option to rapidly assess swelling in candidate materials. For decades, researchers have tried to simulate the harsh environment in a nuclear reactor in the laboratory at an accelerated rate. Here we present the first case in which swelling in a candidate alloy irradiated ~ 2 years in a nuclear reactor was replicated using dual ion irradiation in ~ 1 day with precise control over damage rate, helium injection rate, and temperature and utilize physical models to predict the effects of radiation in reactors. The capability to predict and replicate the complex processes surrounding cavity nucleation and growth across many decades of radiation dose rate highlights the potential of accelerated radiation damage experiments. More importantly, it demonstrates the capability to predict the swelling evolution and the possibility to predict other features of the irradiated microstructure evolution that control material property degradation required to accelerate the development of new, radiation-tolerant materials.

Funder

DOE Office of Nuclear Energy - Nuclear Energy University Programs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3