Benchtop-fabricated lipid-based electrochemical sensing platform for the detection of membrane disrupting agents

Author:

Saem Sokunthearath,Shahid Osama,Khondker Adree,Moran-Hidalgo Camila,Rheinstädter Maikel C.,Moran-Mirabal Jose

Abstract

AbstractThere are increasing concerns about the danger that water-borne pathogens and pollutants pose to the public. Of particular importance are those that disrupt the plasma membrane, since loss of membrane integrity can lead to cell death. Currently, quantitative assays to detect membrane-disrupting (lytic) agents are done offsite, leading to long turnaround times and high costs, while existing colorimetric point-of-need solutions often sacrifice sensitivity. Thus, portable and highly sensitive solutions are needed to detect lytic agents for health and environmental monitoring. Here, a lipid-based electrochemical sensing platform is introduced to rapidly detect membrane-disrupting agents. The platform combines benchtop fabricated microstructured electrodes (MSEs) with lipid membranes. The sensing mechanism of the lipid-based platform relies on stacked lipid membranes serving as passivating layers that when disrupted generate electrochemical signals proportional to the membrane damage. The MSE topography, membrane casting and annealing conditions were optimized to yield the most reproducible and sensitive devices. We used the sensors to detect membrane-disrupting agents sodium dodecyl sulfate and Polymyxin-B within minutes and with limits of detection in the ppm regime. This study introduces a platform with potential for the integration of complex membranes on MSEs towards the goal of developing Membrane-on-Chip sensing devices.

Funder

Ontario Ministry of Research, Innovation and Science

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3