Experimental investigation of optically controlled topological transition in bismuth-mica structure

Author:

Zaitsev Anton,Zykov Dmitry,Demchenko Petr,Novoselov Mikhail,Nazarov Ravshanjon,Masyukov Maxim,Makarova Elena,Tukmakova Anastasiia,Asach Aleksei,Novotelnova Anna,Kablukova Natallya,Khodzitsky Mikhail

Abstract

AbstractThe hyperbolic materials are strongly anisotropic media with a permittivity/permeability tensor having diagonal components of different sign. They combine the properties of dielectric and metal-like media and are described with hyperbolic isofrequency surfaces in wave-vector space. Such media may support unusual effects like negative refraction, near-field radiation enhancement and nanoscale light confinement. They were demonstrated mainly for microwave and infrared frequency ranges on the basis of metamaterials and natural anisotropic materials correspondingly. For the terahertz region, the tunable hyperbolic media were demonstrated only theoretically. This paper is dedicated to the first experimental demonstration of an optically tunable terahertz hyperbolic medium in 0.2–1.0 THz frequency range. The negative phase shift of a THz wave transmitted through the structure consisting of 40 nm (in relation to THz wave transmitted through substrate) to 120 nm bismuth film (in relation to both THz waves transmitted through substrate and air) on 21 µm mica substrate is shown. The optical switching of topological transition between elliptic and hyperbolic isofrequency contours is demonstrated for the effective structure consisting of 40 nm Bi on mica. For the case of 120 nm Bi on mica, the effective permittivity is only hyperbolic in the studied range. It is shown that the in-plane component of the effective permittivity tensor may be positive or negative depending on the frequency of THz radiation and continuous-wave optical pumping power (with a wavelength of 980 nm), while the orthogonal one is always positive. The proposed optically tunable structure may be useful for application in various fields of the modern terahertz photonics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3