Author:
Yamagata Yuki,Yamada Hiroshi
Abstract
AbstractVarious types of drug toxicity can halt the development of a drug. Because drugs are xenobiotics, they inherently have the potential to cause injury. Clarifying the mechanisms of toxicity to evaluate and manage drug safety during drug development is extremely important. However, toxicity mechanisms, especially hepatotoxic mechanisms, are very complex. The significant exposure of liver cells to drugs can cause dysfunction, cell injury, and organ failure in the liver. To clarify potential risks in drug safety management, it is necessary to systematize knowledge from a consistent viewpoint. In this study, we adopt an ontological approach. Ontology provides a controlled vocabulary for sharing and reusing of various data with a computer-friendly manner. We focus on toxic processes, especially hepatotoxic processes, and construct the toxic process ontology (TXPO). The TXPO systematizes knowledge concerning hepatotoxic courses with consistency and no ambiguity. In our application study, we developed a toxic process interpretable knowledge system (TOXPILOT) to bridge the gaps between basic science and medicine for drug safety management. Using semantic web technology, TOXPILOT supports the interpretation of toxicity mechanisms and provides visualizations of toxic courses with useful information based on ontology. Our system will contribute to various applications for drug safety evaluation and management.
Funder
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Klaassen, C. D., Casarett, L. J. & Doull, J. Casarett and Doull’s Toxicology: The Basic Science of Poisons 8th edn. (McGraw-Hill, New York, 2013).
2. Arp, R., Smith, B. & Spear, A. D. Building Ontologies with Basic Formal Ontology (Massachusetts Institute of Technology, Cambridge, 2015).
3. Mizoguchi, R. Ontology Engineering (Ohmsha, Tokyo, 2005).
4. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361. https://doi.org/10.1093/nar/gkw1092 (2017).
5. Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667. https://doi.org/10.1093/nar/gkx1064 (2018).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献